Characterization of membrane-bound serine protease related to degradation of oxidatively damaged erythrocyte membrane proteins.
نویسندگان
چکیده
It has been shown that erythrocyte membrane proteins become susceptible to degradation by membrane-bound serine protease activity after oxidative modification of the membranes (M. Beppu, M. Inoue, T. Ishikawa, K. Kikugawa, Biochim. Biophys. Acta 1196 (1994) 81-87). The aim of the present study was to clarify the presence of the serine protease in oxidized erythrocyte membranes and to characterize the selectivity of the enzyme to oxidized proteins. Human erythrocytes were oxidized in vitro with xanthine/xanthine oxidase/Fe(III) and oxidized membranes isolated. Proteolytic activity of the membranes toward spectrin obtained from oxidized membranes and bovine serum albumin oxidized with H2O2/horseradish peroxidase was increased by membrane oxidation, and the degradability of the substrates was increased by substrate oxidation. The proteolytic activity was inhibited by the serine protease inhibitor diisopropyl fluorophosphate (DFP). The 72 kDa and 80 kDa proteins in the membranes were labeled by [3H]DFP when detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions and subsequent fluorography. The 72 kDa protein was found to be a serine enzyme, acetylcholine esterase. The 80 kDa protein appeared to be responsible for the degradation of oxidatively damaged proteins. The 80 kDa protein was loosely bound to membranes and readily solubilized into a 0.1% NP-40 detergent solution. The presence of the same 80 kDa protease in intact erythrocyte cytosol was suggested. The increased serine protease activity in oxidized membranes can result from the increased adherence of the cytosolic 80 kDa serine protease to the membranes due to oxidation.
منابع مشابه
Degradation of unassembled and damaged thylakoid proteins.
To study protein degradation in thylakoid membranes we identified, characterized and cloned thylakoid proteases, and then linked them to known proteolytic processes. Several families of chloroplast proteases were identified and characterized to different extents. FtsH, an ATP-dependent metalloprotease that belongs to the AAA-protein family, was found to be integral to the thylakoid membrane, fa...
متن کاملPurification of a protease in red blood cells that degrades oxidatively damaged haemoglobin.
Haemoglobin damaged by exposure of red blood cells to oxidants is rapidly degraded by a proteolytic pathway which does not require ATP [Fagan, Waxman & Goldberg (1986) J. Biol. Chem. 261, 5705-5713]. By fractionating erythrocyte lysates, we have purified two proteases which hydrolyse oxidatively damaged haemoglobin (Ox-Hb). One protease hydrolysed small fluorogenic substrates in addition to Ox-...
متن کاملProteases Detection of invitro Culture of Midgut Cells from Hyalomma anatolicum anatolicum (Acari: Ixodidae)
Proteases play a key role in protein digestion in ticks and other haematophagous insects. Our understanding of blood meal digestion in digestive system of ticks can be very useful for better understanding of basic rules for control of ticks. Cells of the midgut endocytose blood components. Blood proteins uptake by midgut cells, suggesting the presence of proteases in the midgut cells. In this...
متن کاملThe Extractability of Inner-Membrane Proteins from Salmonella typhimurium Intact Cells, Spheroplasts and Inner-Membrane Fragments by Non-Denaturing Detergents
The effect of Triton X-100, Na cholate and Tween 80 on the solubilization of integral membrane proteins in intact cells, spheroplasts and inner-membrane fragments of Salmonella typhimurium was studied. The detergents were used in various concentrations (1.6 to 64 mM) and cytochromes b and d were used as marker to monitor the solubilization of membrane-bound proteins. Results showed that no inne...
متن کاملPet toxin from enteroaggregative Escherichia coli produces cellular damage associated with fodrin disruption.
Pet toxin is a serine protease from enteroaggregative Escherichia coli which has been described as causing enterotoxic and cytotoxic effects. In this paper we show that Pet produces spectrin and fodrin (nonerythroid spectrin) disruption. Using purified erythrocyte membranes treated with Pet toxin, we observed degradation of alpha- and beta-spectrin chains; this effect was dose and time dependen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochimica et biophysica acta
دوره 1374 1-2 شماره
صفحات -
تاریخ انتشار 1998